StartGroepenDiscussieMeerTijdgeest
Doorzoek de site
Onze site gebruikt cookies om diensten te leveren, prestaties te verbeteren, voor analyse en (indien je niet ingelogd bent) voor advertenties. Door LibraryThing te gebruiken erken je dat je onze Servicevoorwaarden en Privacybeleid gelezen en begrepen hebt. Je gebruik van de site en diensten is onderhevig aan dit beleid en deze voorwaarden.

Resultaten uit Google Boeken

Klik op een omslag om naar Google Boeken te gaan.

Bezig met laden...

Large Sample Covariance Matrices and High-Dimensional Data Analysis (Cambridge Series in Statistical and Probabilistic Mathematics)

door Jianfeng Yao

LedenBesprekingenPopulariteitGemiddelde beoordelingDiscussies
1Geen7,794,171GeenGeen
High-dimensional data appear in many fields, and their analysis has become increasingly important in modern statistics. However, it has long been observed that several well-known methods in multivariate analysis become inefficient, or even misleading, when the data dimension p is larger than, say, several tens. A seminal example is the well-known inefficiency of Hotelling's T2-test in such cases. This example shows that classical large sample limits may no longer hold for high-dimensional data; statisticians must seek new limiting theorems in these instances. Thus, the theory of random matrices (RMT) serves as a much-needed and welcome alternative framework. Based on the authors' own research, this book provides a firsthand introduction to new high-dimensional statistical methods derived from RMT. The book begins with a detailed introduction to useful tools from RMT, and then presents a series of high-dimensional problems with solutions provided by RMT methods.… (meer)
Onlangs toegevoegd doorNuffieldLibrary
Geen
Bezig met laden...

Meld je aan bij LibraryThing om erachter te komen of je dit boek goed zult vinden.

Op dit moment geen Discussie gesprekken over dit boek.

Geen besprekingen
geen besprekingen | voeg een bespreking toe
Je moet ingelogd zijn om Algemene Kennis te mogen bewerken.
Voor meer hulp zie de helppagina Algemene Kennis .
Gangbare titel
Oorspronkelijke titel
Alternatieve titels
Oorspronkelijk jaar van uitgave
Mensen/Personages
Belangrijke plaatsen
Belangrijke gebeurtenissen
Verwante films
Motto
Opdracht
Eerste woorden
Citaten
Laatste woorden
Ontwarringsbericht
Uitgevers redacteuren
Auteur van flaptekst/aanprijzing
Oorspronkelijke taal
Gangbare DDC/MDS
Canonieke LCC

Verwijzingen naar dit werk in externe bronnen.

Wikipedia in het Engels

Geen

High-dimensional data appear in many fields, and their analysis has become increasingly important in modern statistics. However, it has long been observed that several well-known methods in multivariate analysis become inefficient, or even misleading, when the data dimension p is larger than, say, several tens. A seminal example is the well-known inefficiency of Hotelling's T2-test in such cases. This example shows that classical large sample limits may no longer hold for high-dimensional data; statisticians must seek new limiting theorems in these instances. Thus, the theory of random matrices (RMT) serves as a much-needed and welcome alternative framework. Based on the authors' own research, this book provides a firsthand introduction to new high-dimensional statistical methods derived from RMT. The book begins with a detailed introduction to useful tools from RMT, and then presents a series of high-dimensional problems with solutions provided by RMT methods.

Geen bibliotheekbeschrijvingen gevonden.

Boekbeschrijving
Haiku samenvatting

Actuele discussies

Geen

Populaire omslagen

Snelkoppelingen

Waardering

Gemiddelde: Geen beoordelingen.

Ben jij dit?

Word een LibraryThing Auteur.

 

Over | Contact | LibraryThing.com | Privacy/Voorwaarden | Help/Veelgestelde vragen | Blog | Winkel | APIs | TinyCat | Nagelaten Bibliotheken | Vroege Recensenten | Algemene kennis | 206,980,792 boeken! | Bovenbalk: Altijd zichtbaar