StartGroepenDiscussieMeerTijdgeest
Doorzoek de site
Onze site gebruikt cookies om diensten te leveren, prestaties te verbeteren, voor analyse en (indien je niet ingelogd bent) voor advertenties. Door LibraryThing te gebruiken erken je dat je onze Servicevoorwaarden en Privacybeleid gelezen en begrepen hebt. Je gebruik van de site en diensten is onderhevig aan dit beleid en deze voorwaarden.

Resultaten uit Google Boeken

Klik op een omslag om naar Google Boeken te gaan.

Bezig met laden...

Geometric Algorithms and Combinatorial Optimization

door Martin Grötschel, Laszlo Lovasz, Alexander Schrijver

LedenBesprekingenPopulariteitGemiddelde beoordelingDiscussies
24Geen955,410 (4)Geen
Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs.… (meer)
Onlangs toegevoegd doorzhuazhua88, DawnDrain, ibsdimag, morphismus
Geen
Bezig met laden...

Meld je aan bij LibraryThing om erachter te komen of je dit boek goed zult vinden.

Op dit moment geen Discussie gesprekken over dit boek.

Geen besprekingen
geen besprekingen | voeg een bespreking toe

» Andere auteurs toevoegen

AuteursnaamRolType auteurWerk?Status
Martin Grötschelprimaire auteuralle editiesberekend
Lovasz, Laszloprimaire auteuralle editiesbevestigd
Schrijver, Alexanderprimaire auteuralle editiesbevestigd

Onderdeel van de reeks(en)

Je moet ingelogd zijn om Algemene Kennis te mogen bewerken.
Voor meer hulp zie de helppagina Algemene Kennis .
Gangbare titel
Informatie afkomstig uit de Engelse Algemene Kennis. Bewerk om naar jouw taal over te brengen.
Oorspronkelijke titel
Alternatieve titels
Oorspronkelijk jaar van uitgave
Mensen/Personages
Belangrijke plaatsen
Belangrijke gebeurtenissen
Verwante films
Motto
Opdracht
Eerste woorden
Citaten
Laatste woorden
Ontwarringsbericht
Uitgevers redacteuren
Auteur van flaptekst/aanprijzing
Oorspronkelijke taal
Gangbare DDC/MDS
Canonieke LCC

Verwijzingen naar dit werk in externe bronnen.

Wikipedia in het Engels (2)

Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs.

Geen bibliotheekbeschrijvingen gevonden.

Boekbeschrijving
Haiku samenvatting

Actuele discussies

Geen

Populaire omslagen

Snelkoppelingen

Waardering

Gemiddelde: (4)
0.5
1
1.5
2
2.5
3
3.5
4 1
4.5
5

Ben jij dit?

Word een LibraryThing Auteur.

 

Over | Contact | LibraryThing.com | Privacy/Voorwaarden | Help/Veelgestelde vragen | Blog | Winkel | APIs | TinyCat | Nagelaten Bibliotheken | Vroege Recensenten | Algemene kennis | 206,303,331 boeken! | Bovenbalk: Altijd zichtbaar